
TranzAxis
and the
payments
industry

Payments industry evolution
The evolution of the payments industry to date can be loosely placed into three categories.
For the purpose of this ebook we will call them eras. Each era has different technology and
different approaches to technology itself. Eras do not have set boundaries; different
countries across the world mature at different rates, as do market segments and market
players, making it entirely possible for different eras to co-exist in the same timeframe.

To simplify matters, let’s call the three main eras, pre-modern, modern and post-modern.

TranzAxis and the
payments industry

2

The pre-modern
era
The era when electronic payments made their first appearance
and the payments industry was born. At first, payments services
were only available in financially developed markets and to a
very small number of customers. Payment applications
functioned on unique mainframes, software was enormously
expensive and they required very highly skilled staff to run and
maintain them.

The demand for payments services grew rapidly, but the
technology of this pre-modern era prevented the industry from
fulfilling these demands. This led to the first technological
revolution and the transition into the next era.

TranzAxis and the
payments industry

3

The modern era
This era can be distinguished by the fast spread of electronic
payments globally, with the appearance of private, local and
national networks, and the rise of global networks as these
smaller networks united. This growth can be attributed to access:
the widespread reach of card acceptance and quicker card
issuance turnaround. The industry grew quantitatively rather than
qualitatively: the same services were available, but for a larger
number of people.

To support this growth, a need for new technology arose.
Mainframes were replaced by Unix and Windows systems; Cobol,
Fortran, TAL, replaced by C and C++, whilst X.25 networks were
replaced by TCP/IP. The modern era is one that embraced the
mass distribution of standard services, and therefore the main
requirements for these systems was accessibility: standard, not
too expensive hardware, reasonably priced plug and play
software and staff requirements sat at mid-level qualifications.

A typical payment application from this era can be described as a
standard box you can move to another location, unpack and start
issuing cards (a very simplified example, but prudent
never-the-less). The potential for extensive development had
been exhausted. Everyone had cards in their wallets, every shop
had a POS terminal and every street had an ATM. There was a
need for a paradigm shift, driven by the question: what’s next?

TranzAxis and the
payments industry

4

The post-modern
era
The transition to this era began in developed markets several
years ago, and it will continue to spread across the world as time
moves on. The main driver of development is the penetration of
financial services into every aspect of people’s lives; creating a
digital economy. This era is defined by the hundreds of
specialised products tailored to specialised segments of the
market. Around more traditional institutions, FinTech start-ups
appear, quickly developing their own niche and solutions for it in
order to gain competitive advantage over their slower moving
competitors. This era is defined by the personalisation of
payments: no longer are you considered competitive if you are
exactly like everyone else.

This era is led by the creation of unique financial services and,
therefore, the main requirement for payment systems is flexibility.
The time for “boxed” solutions has passed, and the time for open
platforms has arisen.

TranzAxis and the
payments industry

5

As we transition between the eras of evolution in the payments
industry, we can clearly see the fundamental changes to the
approaches for building payment services. The driver of these
changes has always been to meet the new requirements that
each era has presented. It is the development of the technology
that has made these changes possible.

In terms of architecture, the pre-modern era has been analysed
and dissected enough. We all know the advantages and
disadvantages that mainframe systems afford, so let’s move on
to take a closer look at the modern era.

The most obvious characteristic of payment services architecture
for this era is the very strict separation of offline and online
systems. This division is largely due to the fact that, during this
time, the architects who built the foundation of the software were
limited by the development of information technologies and what
general computing allowed. It did not allow for the effective
combination of real-time and batch load in one system. An
example of the typical architecture for this era can be seen on the
right.

The evolution of
architecture

TranzAxis and the
payments industry

Online O�ine

6

It’s important to note that the line of separation here is not based
on the functional components, but is specifically dictated by the
technical limitations. As a result of this division, the business
objects (cards, accounts, customers, contracts, etc.) are split
based on technology - not business logic. Each object lives
concurrently in two or more systems, whereby no single system
knows the actual up-to-date information about the current state of
the object: no one system has full visibility of the object.

The division into online and offline systems was justified and
tolerated at the beginning of this era, but gradually became a
hindrance over time. Today, customers want everything right
now, and expect all relevant information to be available 24/7/365,
which is completely impossible if the information is spread across
several systems that only talk to each other via file exchange.

Another distinctive characteristic of payment system architecture
in this era, is poor connectivity: separate components interact
with each other via narrow interfaces with limited message types
using proprietary non-standard protocols, and the prevailing
method of information exchange is files. As time progressed, with
the development of a larger variety of payment services and the
need for their integration into the wider context of the digital
economy, these integration flows have become increasingly more
complicated and mainly online.

As we move into the post-modern era, the development of
information technology has allowed the move away from the
separation of systems (into online/offline) and has enabled the
architecting of systems based on a single responsibility: whereby
each business object lives in one system which has a full view of
all object-related information and can perform all operations
specific to it (of course this is within the remit of one business
domain).

TranzAxis and the
payments industry

7

In order to function effectively in such a SOA architecture,
components should be designed in a specific way. It
becomes critical to have a fully-functional, reliable,
well-structured and documented API that supports modern
standards and technologies for integration. In modern
systems, APIs are not something you bolt on whilst the
system core is developed, they are one of the most
important architectural components embedded into the DNA
of the system.

This doesn’t mean that the modern architecture implies the use of
a single, enormous monolith. In large FIs it makes sense to divide
the monolith into several services (micro services), but this
separation is not determined by technical limitations, but by
functional charateristics.

TranzAxis and the
payments industry

8

The evolution
of development
methods for
payments
services
The payment industry has been developing rapidly
throughout its existence. However, the methods for
developing and implementing new innovations in
each era are fundamentally different.

TranzAxis and the
payments industry

9

Pre-modern
development
principles

At the conception of the payments industry, each new payment
service was unique and each payment system was bespoke and
created from the ground up. It very quickly became clear that
building each system from scratch was both very expensive and
inefficient. It was then when the first, replicable product was born -
ACI BASE24. This was a massive leap forward for the foundation
of the whole industry.

TranzAxis and the
payments industry

BASE24 came with the source code and many users of this
product programmed new modules on top of it or even modified
the core. At first glance, this allowed FIs to develop their services
independently without relying on the vendor. However, this
development method had and still has a fundamental problem: the
complexity of product upgrade. When a new version of the
product is supplied, the users have to rebuild and check every
one of their developments and customisations. Each upgrade
suddenly becomes a long, complicated, expensive and risky
project, and the further you develop and customise the product,
the more it costs, until eventually it no longer makes financial or
business sense.

10

Modern development principles
The initial versions of software products of this era were rather
limited in flexibility. All the user could really do with them was
change the pre-defined parameters. As services developed the
number of parameters increased exponentially and it became
apparent that further development along this route was
impossible. Some vendors decided to give source code to their
customers and let them make changes to it themselves. It’s clear
that this cannot be considered a great idea. After several sales
like this, the vendor ends up with several versions of the same
product, that each need to be supported separately. No vendor
can actually afford to do this. The customer has a clone of an old
version of the product that they have to support and develop by
themselves. This approach is only viable for the largest and
richest FIs, but even then, it becomes increasingly expensive
year-on-year.

Some vendors found a better way of developing their systems.
Their customers gained the ability to extend and modify the
product using various user scripts, user functions and user exits
(we call this algorithmic customisation). At the same time, the
core of the product remains unchanged and common for all
customers: the vendor can effectively develop it, and customers
deploy new versions relatively easily.

The idea of algorithmic customisation has been quite successful.
It has enabled the industry to progress for many years. However,
it’s potential is not infinite and has fundamental limitations:

The user can not change the core of the system and
therefore is forced to cram innovation into the object model
and the transactional engine of a standard product. Almost
every product of this era is built around one main object: the
card. For these products, the card is the only payment
method; the only means to identify and authenticate the
customer and the only way to access the card account. The
execution of card transactions is the only way to make a
payment. With time, these limitations have lessened, but it’s
impossible to completely get rid of the inherent
characteristics that are built into the systems DNA, you can
only lessen it

As the industry developed, non-card payment methods and
transactional scenarios arrived. However, the developers of
algorithmic customisations have to emulate all of this in the
old card language. Implementation of new functionality in
these conditions isn’t simple. The system turns into an ugly
tangle of low-grade substitutions that grow more expensive
to maintain each year

From the point of view of today’s developer, algorithmic
customisation technologies are last century. IDEs, tools for
analysis and code review, version control, automatic testing
delivery and implementation, etc. are all either missing or not
fit for purpose

TranzAxis and the
payments industry

11

Post-modern
development
principles
When approaching the post-modern era, system
developers looked at everything that had been done
before and decided to move on, searching and
finding new ways of developing.

The next two pages will cover these principles.

TranzAxis and the
payments industry

12

Many traditional FIs, well established in the market are forced to
follow this path. In the centre of their payment infrastructure,
playing the role of transactional core, are the systems that were
built in the early modern/pre-modern eras. These systems are
exhausted in terms of development potential. Therefore, the
majority of innovations are developed outside the code in the
peripheral services.

Old core, new
periphery

This approach has clear disadvantages and limitations. First of all,
the core is old and it significantly hinders the implementation of
new functionality. A legacy system that was most likely built
during an era that was pre-internet and smartphone, where the
only payment method option is a card, cannot adequately reflect
the real objects and functions of the modern payment world.
Developers therefore have to constantly replace the real payment
operations with fake card transactions, and otherwise mimic the
real world in order to trick the core, as it is unable to understand
the payments world as it stands today.

The old core also prohibits the ability to solve technological tasks.
Using modern integration technologies, monitoring, virtualisation,
cloud deployment, automation, CI/CD, - all rests against the
limitations of the old system and is impossible to use. The
presence of the old core makes it impossible for FIs to fully take
advantage of the technological advancements of the IT industry.

TranzAxis and the
payments industry

13

10

FinTech start-ups
with an external
processor

FinTech start-ups
with full
development cycles

In this instance, the start-up independently creates their
own customer facing services and uses an external
processor to access the larger payments infrastructure to
perform actual financial transactions. This allows FinTechs
to concentrate on their areas of competency and to give the
“boring” part to someone else. The problems to this
approach are obvious: traditional processors cannot offer
the advanced APIs they require, neither can they develop
and maintain them as fast as required. Many processors
are oriented to providing standard mass market services at
competitive prices and either cannot, or will not, provide
each of their customers unique capabilities and services.

Here the FinTech independently develops and implements all of
their main systems, starting with front end applications for
customers and ending with a transactional engine. Potentially this
approach can give FinTechs maximum freedom to innovate
alongside vendor independence. Many have tried to take this
route, but only single digits have been successful.

The development of payment applications is a very complex task
that requires very unique experience and qualifications. The
global market has a finite number of specialists that are capable
of building payment systems from scratch. Development from the
ground up takes years and has insurmountable risks. From the
time it takes to build a full payment application from scratch, the
potential is high that the initial idea will already obsolete and no
longer make business sense. By and large, this route is only
applicable to giants with near unlimited resources such as Apple,
Google, Facebook, that finance the payment part from a
completely different business domain.

TranzAxis and the
payments industry

14

TranzAxis © Compass Partner

CSM for BankX © Compass Plus / Partner

Introducing
TranzAxis
As demonstrated above, for any FI, both the use of the old core
and the independent development of their own platform can be
unsuccessful strategies.

You cannot use a system whose skeleton was created at the
dawn of the payment industry as a payments platform today.
Such a “box” is not able to adequately represent the objects and
functions of a modern payment environment, is not able to
effectively interact with other systems in a service-oriented
architecture, and does not do well in a dynamic cloud
environment. And most importantly, does not enable rapid
development.

It is not practical to create a payment platform for an individual
customer. In addition to the associated problems of cost, duration
and risk described above, this will inevitably limit the flexibility
and universality of the system. The platform must be initially
designed and developed as a replicable product suitable for
solving a wide class of tasks for a wide variety of clients. Only
then, will it have the sufficient margin of flexibility and strength to
guarantee customers’ unhindered development for years to
come.

At Compass Plus Technologies, we decided to give financial
institutions another option - to use our TranzAxis product as a
platform for innovation. The TranzAxis platform (in addition to
algorithmic customisation) offers a new way of development:
developing a custom layer.

The system, built on the TranzAxis platform, is a stack of several
layers:

The TranzAxis layer implements all the objects and
functions necessary for building payment applications: a
transaction engine, a financial accounting mechanism,
cards and other means of payment, customers, accounts,
interfaces, cryptography and much more. TranzAxis is
supplied and maintained as a replicable software product.

On top of the TranzAxis platform, our customers themselves, or
us, based on their requirements, can create and develop their
own layer, where they can implement any unique features they
want in order to offer competitive and differentiating payment
services.

This development method removes the problems described
above and has distinct advantages:

There are no restrictions on what can be done in the custom
layer. Here FIs can create their own objects, transactions,
interfaces, batch procedures, workplaces, reports, etc.
Actually, here FIs can do everything that we can do in
TranzAxis, without exception or limitation. They have
access to all the development tools we have and use

TranzAxis and the
payments industry

Designing a payment platform is a very significant task with the
need to find and constantly maintain a delicate balance between
conflicting requirements.

The platform should enable the quick creation of new
services, but at the same time strictly meet the requirements
associated with security, performance, fault tolerance,
scalability, compatibility with industry standards

The platform must be extremely flexible, but it must not be a
do-it-yourself lego-style design. It should make it easy to
implement standard functions using standard tools, and
enable the FI to focus on the development of innovative
functions

The development tools provided by the platform should
allow any idea to be implemented. However, the
implementation of a new function should not start from
scratch every time; all objects, functions and services in the
platform should be available to the developer

Customers need the opportunity to freely create their own
differentiating services on our platform, whilst continuing to
receive platform updates without compromising their own
developments

Development tools should, on one hand, be modern and
recognisable to developers, and on the other, focused on
being fit for purpose for the payment industry

The developer must have the freedom of creativity, but the
system being created is business critical and must be
protected as much as possible from human error

Unique Module © BankX

Any customer who does their own development has direct
access to the richest API a platform has to offer. The
customer does not have to "reinvent the wheel", they can
concentrate on solving their business problems and not
waste time re-implementing standard functions

Development tools are supplied as part of the platform.
These are present-day industry-standard tools, exactly those
we use when developing the platform: modern IDE, testing,
integration, delivery, maintenance tools

A customer doing their own development can be assured that
after installing a new version of the platform they will not
have to redevelop and test their code. The platform
guarantees compatibility which is technologically enabled,
and not prone to human error

15

As demonstrated above, for any FI, both the use of the old core
and the independent development of their own platform can be
unsuccessful strategies.

You cannot use a system whose skeleton was created at the
dawn of the payment industry as a payments platform today.
Such a “box” is not able to adequately represent the objects and
functions of a modern payment environment, is not able to
effectively interact with other systems in a service-oriented
architecture, and does not do well in a dynamic cloud
environment. And most importantly, does not enable rapid
development.

It is not practical to create a payment platform for an individual
customer. In addition to the associated problems of cost, duration
and risk described above, this will inevitably limit the flexibility
and universality of the system. The platform must be initially
designed and developed as a replicable product suitable for
solving a wide class of tasks for a wide variety of clients. Only
then, will it have the sufficient margin of flexibility and strength to
guarantee customers’ unhindered development for years to
come.

At Compass Plus Technologies, we decided to give financial
institutions another option - to use our TranzAxis product as a
platform for innovation. The TranzAxis platform (in addition to
algorithmic customisation) offers a new way of development:
developing a custom layer.

The system, built on the TranzAxis platform, is a stack of several
layers:

The TranzAxis layer implements all the objects and
functions necessary for building payment applications: a
transaction engine, a financial accounting mechanism,
cards and other means of payment, customers, accounts,
interfaces, cryptography and much more. TranzAxis is
supplied and maintained as a replicable software product.

On top of the TranzAxis platform, our customers themselves, or
us, based on their requirements, can create and develop their
own layer, where they can implement any unique features they
want in order to offer competitive and differentiating payment
services.

This development method removes the problems described
above and has distinct advantages:

There are no restrictions on what can be done in the custom
layer. Here FIs can create their own objects, transactions,
interfaces, batch procedures, workplaces, reports, etc.
Actually, here FIs can do everything that we can do in
TranzAxis, without exception or limitation. They have
access to all the development tools we have and use

Designing a payment platform is a very significant task with the
need to find and constantly maintain a delicate balance between
conflicting requirements.

The platform should enable the quick creation of new
services, but at the same time strictly meet the requirements
associated with security, performance, fault tolerance,
scalability, compatibility with industry standards

The platform must be extremely flexible, but it must not be a
do-it-yourself lego-style design. It should make it easy to
implement standard functions using standard tools, and
enable the FI to focus on the development of innovative
functions

The development tools provided by the platform should
allow any idea to be implemented. However, the
implementation of a new function should not start from
scratch every time; all objects, functions and services in the
platform should be available to the developer

Customers need the opportunity to freely create their own
differentiating services on our platform, whilst continuing to
receive platform updates without compromising their own
developments

Development tools should, on one hand, be modern and
recognisable to developers, and on the other, focused on
being fit for purpose for the payment industry

The developer must have the freedom of creativity, but the
system being created is business critical and must be
protected as much as possible from human error

Any customer who does their own development has direct
access to the richest API a platform has to offer. The
customer does not have to "reinvent the wheel", they can
concentrate on solving their business problems and not
waste time re-implementing standard functions

Development tools are supplied as part of the platform.
These are present-day industry-standard tools, exactly those
we use when developing the platform: modern IDE, testing,
integration, delivery, maintenance tools

A customer doing their own development can be assured that
after installing a new version of the platform they will not
have to redevelop and test their code. The platform
guarantees compatibility which is technologically enabled,
and not prone to human error

TranzAxis and the
payments industry

16

As demonstrated above, for any FI, both the use of the old core
and the independent development of their own platform can be
unsuccessful strategies.

You cannot use a system whose skeleton was created at the
dawn of the payment industry as a payments platform today.
Such a “box” is not able to adequately represent the objects and
functions of a modern payment environment, is not able to
effectively interact with other systems in a service-oriented
architecture, and does not do well in a dynamic cloud
environment. And most importantly, does not enable rapid
development.

It is not practical to create a payment platform for an individual
customer. In addition to the associated problems of cost, duration
and risk described above, this will inevitably limit the flexibility
and universality of the system. The platform must be initially
designed and developed as a replicable product suitable for
solving a wide class of tasks for a wide variety of clients. Only
then, will it have the sufficient margin of flexibility and strength to
guarantee customers’ unhindered development for years to
come.

At Compass Plus Technologies, we decided to give financial
institutions another option - to use our TranzAxis product as a
platform for innovation. The TranzAxis platform (in addition to
algorithmic customisation) offers a new way of development:
developing a custom layer.

The system, built on the TranzAxis platform, is a stack of several
layers:

The TranzAxis layer implements all the objects and
functions necessary for building payment applications: a
transaction engine, a financial accounting mechanism,
cards and other means of payment, customers, accounts,
interfaces, cryptography and much more. TranzAxis is
supplied and maintained as a replicable software product.

On top of the TranzAxis platform, our customers themselves, or
us, based on their requirements, can create and develop their
own layer, where they can implement any unique features they
want in order to offer competitive and differentiating payment
services.

This development method removes the problems described
above and has distinct advantages:

There are no restrictions on what can be done in the custom
layer. Here FIs can create their own objects, transactions,
interfaces, batch procedures, workplaces, reports, etc.
Actually, here FIs can do everything that we can do in
TranzAxis, without exception or limitation. They have
access to all the development tools we have and use

Designing a payment platform is a very significant task with the
need to find and constantly maintain a delicate balance between
conflicting requirements.

The platform should enable the quick creation of new
services, but at the same time strictly meet the requirements
associated with security, performance, fault tolerance,
scalability, compatibility with industry standards

The platform must be extremely flexible, but it must not be a
do-it-yourself lego-style design. It should make it easy to
implement standard functions using standard tools, and
enable the FI to focus on the development of innovative
functions

The development tools provided by the platform should
allow any idea to be implemented. However, the
implementation of a new function should not start from
scratch every time; all objects, functions and services in the
platform should be available to the developer

Customers need the opportunity to freely create their own
differentiating services on our platform, whilst continuing to
receive platform updates without compromising their own
developments

Development tools should, on one hand, be modern and
recognisable to developers, and on the other, focused on
being fit for purpose for the payment industry

The developer must have the freedom of creativity, but the
system being created is business critical and must be
protected as much as possible from human error

TranzAxis and the
payments industry

Any customer who does their own development has direct
access to the richest API a platform has to offer. The
customer does not have to "reinvent the wheel", they can
concentrate on solving their business problems and not
waste time re-implementing standard functions

Development tools are supplied as part of the platform.
These are present-day industry-standard tools, exactly those
we use when developing the platform: modern IDE, testing,
integration, delivery, maintenance tools

A customer doing their own development can be assured that
after installing a new version of the platform they will not
have to redevelop and test their code. The platform
guarantees compatibility which is technologically enabled,
and not prone to human error

Our award winning,
open development

payments platform,
TranzAxis,
achieves all this

and more

17

compassplustechnologies.com

Copyright © 2022. Compass Plus Ltd. All Rights Reserved. TranzAxis is a registered trademark of Compass Plus Ltd.

